Vertical Asymptote - Values for x that create imaginary lines that a function approaches but may never cross are called, Slant Asymptote - If the numerator of a function is exactly one degree higher than the denominator, what type of asymptote does the function contain?, Holes - Points that are excluded from the function, but are not asymptotes are called, Local Minimum - A point included on a graph where the function switches from a decreasing interval to an increasing interval is called a, Y-intercepts - This is NOT a point of interest when solving and graphing rational inequalities, x≥2 - Solution(s) to: 3x+2≥8, -1<x<9 - Solution(s) to: |x-4|<5, No horizontal asymptote - Property of: (3x3+4x+7)/(4x-1), Horizontal asymptote @ y=-3 - Property of: (9x2+2x-1)/(-3x2+6), Horizontal asymptote @ y=0 - Property of: (4x2+5x+6)/(2x4-1), X-intercepts @ -4,3 - Property of: (x2+x-12)/(2x2+x-1), Vertical asymptote @ -1,1 - Property of: (3x2+2x)/(x3-x), (-⚮,-6)U(2.5,⚮) - Solution(s) to: 2x2+7x-30>0, (-⚮,-7]U[0,3] - Solution(s) to: x3+4x2-21x≤0, (-4,0)U(3,⚮) - Solution(s) to: (x2+4x)/(x-3)>0, (3,4] - Solution(s) to: (x2-x-12)/(x2-9)≤0, 2x+1 - (2x3-7x2+6x+5) DIVIDED BY (x2-4x+5), 3x2-1 - (6x4-17x2+5) DIVIDED BY (2x2-5), y=3x-1 - Equation of slant asymptote for: (9x3-15x2+25x-7)/(3x2-4x+7), Hole @ 5 - Property of: x(x+2)(x-3)(x-5)/(x+1)(x-1)(x-5),
0%
Pre-Calculus Quiz 4 (Practice)
Sdílet
podle
Cdabney
Upravit obsah
Vložit
Více
Přiřazení
Výsledková tabule/Žebříček
Zobrazit více
Zobrazit méně
Tento žebříček je v současné době soukromý. Klikněte na
Share
chcete-li jej zveřejnit.
Tuto výsledkovou tabuli vypnul majitel zdroje.
Tento žebříček je zakázán, protože vaše možnosti jsou jiné než možnosti vlastníka zdroje.
Možnosti vrácení
Spojte odpovídající
je otevřená šablona. Negeneruje skóre pro žebříček.
Vyžaduje se přihlášení.
Vizuální styl
Fonty
Je vyžadováno předplatné
Možnosti
Přepnout šablonu
Zobrazit vše
Při přehrávání aktivity se zobrazí další formáty.
Otevřené výsledky
Kopírovat odkaz
QR kód
Odstranit
Obnovit automatické uložení:
?