1) Solve this quadratic equation to find its roots. x2-9=0 a) x= 0, x=9 b) x= +/- 3 c) x= 0, x=-9 d) x=-3, x=-3 2) Solve this quadratic equation 4x2-64=0 a) (2x+8)(2x-8) b) x=-4 c) x=-4, x=4 d) x=0, x=16 3) Factorize this quadratic expression 9y2 - 1 a) (3y-1)(3y+1) b) (9y-1)(9y+1) c) (3y-1)(9y+1) d) (9y-1)(y+1) 4) Factorize this quadratic expression 2x2 + 6x a) 2x2(x+3) b) x2(2+3x) c) x2(5) d) 2x(x+3) 5) x² - 2x - 8 = 0 cuts the x-axis at a) x=2, x=4 b) x=-2, x=4 c) x=-2, x=-4 d) x=2, x=-4 6) The value of a, b and c in the quadratic equation x² + x=2 are a) a=1, b=2 c=1 b) a=-1, b=1, c=-2 c) a=1, b=1, c=-2 d) a=11, b=1, c=2 7) The roots of the quadratic equation x² + x=2 are a) x=1, x= -2 b) x=-1, x= -2 c) x=1, x=2 d) x=-1, x=2 8) The quadratic curve y= x² - 2x - 8 cuts the y axis at a) -8 b) -2 c) 1 d) -1 9) The two values of k which satisfy the equation 3k2 =18k + 21 are a) k=7, k=-1 b) k=-7, k=1 c) k=3, k=-2 d) k=18, k=2 10) The quadratic curve y=b2 + 3b -4 will be a a) minimum curve b) maximum curve c) straight line 11) The quadratic curve y= -x2-2x+2 will be a  a) maximum curve b) minimum curve c) straight line

Quadratics

szerző:

Ranglista

Vizuális stílus

Beállítások

Kapcsoló sablon

Automatikus mentés visszaállítása :?