1) Segment ED is a midsegment of ΔABC  a) Reflexive Property b) Definition of congruent segments c) Definition of midsegment. d) Given 2) Segment AD≌Segment DB and Segment AE≌Segment EC. a) Segment Addition Postulate b) Division c) Given d) Definition of midsegment. 3) AD=DB and AE=EC a) Similar triangles have proportional sides b) SAS Similarity Theorem c) Addition d) Definition of congruent segments 4) AB=AD+DB and AC=AE+EC a) Segment Addition Postulate b) Addition c) Given d) Ratios of Corresponding Sides 5) If AB=AD+DB and AC=AE+EC, then AB=AD+AD and AC=AE+AE a) Addition b) Substitution c) Given d) Reflexive Property 6) If AB=AD+AD and AC=AE+AE, then AB=2AD and AC=2AE a) Given b) Substitution c) Segment Addition Postulate d) Addition 7) AB/AD=2AD/AD=2 and AC/AE=2AE/AE=2 a) Reflexive Property b) Definition of congruent segments c) Ratios of Corresponding Sides d) Substitution 8) <A≌<A a) Segment Addition Postulate b) Division c) Reflexive Property d) Given 9) △ABC∼△ADE a) Addition b) SAS Similarity Theorem c) Division d) Similar triangles have proportional sides 10) BC=2DE a) Similar triangles have proportional sides b) Division c) Segment Addition Postulate d) Given 11) If BC=2DE, then DE=(1/2)BC a) Reflexive Property b) SAS Similarity Theorem c) Addition d) Division

Win or Lose Midsegment Theorem to Prove Similarity Lesson 25 Geo A

Classifica

Stile di visualizzazione

Opzioni

Cambia modello

Ripristinare il titolo salvato automaticamente: ?