1) Ao somar todos os gastos da semana, Maria somou, por engano, duas vezes o valor da conta do supermercado, o que resultou num gasto total de R $ 832,00. Porém, se ela não tinha somado nenhuma vez a conta do supermercado, o valor encontrado seria R $ 586,00. O valor correto dos gastos de Maria durante essa semana foi a) R $ 573,00 b) R $ 684,00 c) R$ 709,00 d) R $ 765,00 e) R $ 825,00 2) Em um dado momento em que Ari e Iná atendiam ao público nos guichês de duas caixas de uma Agência do Banco do Brasil, foi observado que uma fila de pessoas à frente do guichê ocupado por Ari tinha 4 pessoas a mais que aquela formada frente ao guichê que Iná ocupava. Sabendo que, nesse momento, se 8 pessoas da fila de Ari passassem para uma fila de Iná, esta última ficaria com o dobro do número de pessoas da Ari, então, o total de pessoas das duas filas era: a) 22 b) 24 c) 28 d) 30 e) 36 3) (PM ES). Existe um número que somado com seu triplo é igual ao dobro desse número somado com doze. O valor desse número é: a) 3 b) 4 c) 5 d) 6 e) 7 4) (PM Acre Soldado 2012 - Funcab). Determine o produto das raízes da equação x² - 3x + 36 = 2x - x² - 14. a) 2,5 b) 10 c) 25 d) 100 e) 50 5) Questão 3 (Guarda Civil SP). A soma entre dois números positivos é 37. Se o produto entre eles é 330, então o valor da diferença entre o maior e o menor número é: a) 7 b) 23 c) 61 d) 17 e) 49 6) Em uma praça há 18 crianças andando de bicicleta ou de skate. No total, há 50 rodas girando pela praça. Quantas crianças andam de bicicleta e quantas andam de skate? a) 7 crianças andando de skate e 11 crianças andando de bicicleta b) 11 crianças andando de skate e 7 crianças andando de bicicleta c) 7 crianças andando de skate e 13 crianças andando de bicicleta d) 9 crianças andando de skate e 11 crianças andando de bicicleta e) 7 crianças andando de skate e 7 crianças andando de bicicleta 7) Qual é o menor valor inteiro que satisfaz a desigualdade apresentada a seguir? 9x + 2 (3x - 4)> 11x - 14 a) -2 b) -1 c) 0 d) 1 e) 2 8) O conjunto de todas as soluções reais da inequação 2x + 1 <3x + 2 é a) x < -1 b) x ≥ -1 c) x > -1 d) ≤ -1 9) Resolva a inequação a seguir (x + 5) / (x-2) ≥ 0 a) x < (-5) ou x ≥ 2 b) x < (- 5) ou x> 2 c) x ≤ (-5) ou x> 2 d) x = (- 5) ou x ≥ 2 e) x <(- 5) ou x = 2 10) Determine uma solução da inequação –2x² - x + 1 ≤ 0 a) S = {x ∈R / x < (–1) ou x ≥ 1/2} b) S = {x ∈R / x ≤ (–1) ou x <1/2} c) S = {x ∈R / x = (–1) ou x ≥ 1/2} d) S = {x ∈R / x ≤ (–1) ou x = 1/2} e) S = {x ∈R / x ≤ (–1) ou x ≥ 1/2}
0%
Equações e Inequações 6º Ano
共有
Maicomarinho
さんの投稿です
コンテンツの編集
埋め込み
もっと見る
割り当て
リーダーボード
もっと表示する
表示を少なくする
このリーダーボードは現在非公開です。公開するには
共有
をクリックしてください。
このリーダーボードは、リソースの所有者によって無効にされています。
このリーダーボードは、あなたのオプションがリソースオーナーと異なるため、無効になっています。
オプションを元に戻す
ボックスを開く
は自由形式のテンプレートです。リーダーボード用のスコアは生成されません。
ログインが必要です
表示スタイル
フォント
サブスクリプションが必要です
オプション
テンプレートを切り替える
すべてを表示
アクティビティを再生すると、より多くのフォーマットが表示されます。
オープン結果
リンクをコピー
QRコード
削除
自動保存:
を復元しますか?