Vertical Asymptote - Values for x that create imaginary lines that a function approaches but may never cross are called, Slant Asymptote - If the numerator of a function is exactly one degree higher than the denominator, what type of asymptote does the function contain?, Holes - Points that are excluded from the function, but are not asymptotes are called, Local Minimum - A point included on a graph where the function switches from a decreasing interval to an increasing interval is called a, Y-intercepts - This is NOT a point of interest when solving and graphing rational inequalities, x≥2 - Solution(s) to: 3x+2≥8, -1<x<9 - Solution(s) to: |x-4|<5, No horizontal asymptote - Property of: (3x3+4x+7)/(4x-1), Horizontal asymptote @ y=-3 - Property of: (9x2+2x-1)/(-3x2+6), Horizontal asymptote @ y=0 - Property of: (4x2+5x+6)/(2x4-1), X-intercepts @ -4,3 - Property of: (x2+x-12)/(2x2+x-1), Vertical asymptote @ -1,1 - Property of: (3x2+2x)/(x3-x), (-⚮,-6)U(2.5,⚮) - Solution(s) to: 2x2+7x-30>0, (-⚮,-7]U[0,3] - Solution(s) to: x3+4x2-21x≤0, (-4,0)U(3,⚮) - Solution(s) to: (x2+4x)/(x-3)>0, (3,4] - Solution(s) to: (x2-x-12)/(x2-9)≤0, 2x+1 - (2x3-7x2+6x+5) DIVIDED BY (x2-4x+5), 3x2-1 - (6x4-17x2+5) DIVIDED BY (2x2-5), y=3x-1 - Equation of slant asymptote for: (9x3-15x2+25x-7)/(3x2-4x+7), Hole @ 5 - Property of: x(x+2)(x-3)(x-5)/(x+1)(x-1)(x-5),
0%
Pre-Calculus Quiz 4 (Practice)
공유
만든이
Cdabney
콘텐츠 편집
퍼가기
더보기
순위표
더 보기
접기
이 순위표는 현재 비공개입니다.
공유
를 클릭하여 공개할 수 있습니다.
자료 소유자가 이 순위표를 비활성화했습니다.
옵션이 자료 소유자와 다르기 때문에 이 순위표가 비활성화됩니다.
옵션 되돌리기
매치업
(은)는 개방형 템플릿입니다. 순위표에 올라가는 점수를 산출하지 않습니다.
로그인이 필요합니다
비주얼 스타일
글꼴
구독 필요
옵션
템플릿 전환하기
모두 표시
액티비티를 플레이할 때 더 많은 포맷이 나타납니다.
결과 열기
링크 복사
QR 코드
삭제
자동 저장된
게임을 복구할까요?