Vertical Asymptote - Values for x that create imaginary lines that a function approaches but may never cross are called, Slant Asymptote - If the numerator of a function is exactly one degree higher than the denominator, what type of asymptote does the function contain?, Holes - Points that are excluded from the function, but are not asymptotes are called, Local Minimum - A point included on a graph where the function switches from a decreasing interval to an increasing interval is called a, Y-intercepts - This is NOT a point of interest when solving and graphing rational inequalities, x≥2 - Solution(s) to: 3x+2≥8, -1<x<9 - Solution(s) to: |x-4|<5, No horizontal asymptote - Property of: (3x3+4x+7)/(4x-1), Horizontal asymptote @ y=-3 - Property of: (9x2+2x-1)/(-3x2+6), Horizontal asymptote @ y=0 - Property of: (4x2+5x+6)/(2x4-1), X-intercepts @ -4,3 - Property of: (x2+x-12)/(2x2+x-1), Vertical asymptote @ -1,1 - Property of: (3x2+2x)/(x3-x), (-⚮,-6)U(2.5,⚮) - Solution(s) to: 2x2+7x-30>0, (-⚮,-7]U[0,3] - Solution(s) to: x3+4x2-21x≤0, (-4,0)U(3,⚮) - Solution(s) to: (x2+4x)/(x-3)>0, (3,4] - Solution(s) to: (x2-x-12)/(x2-9)≤0, 2x+1 - (2x3-7x2+6x+5) DIVIDED BY (x2-4x+5), 3x2-1 - (6x4-17x2+5) DIVIDED BY (2x2-5), y=3x-1 - Equation of slant asymptote for: (9x3-15x2+25x-7)/(3x2-4x+7), Hole @ 5 - Property of: x(x+2)(x-3)(x-5)/(x+1)(x-1)(x-5),
0%
Pre-Calculus Quiz 4 (Practice)
Del
etter
Cdabney
Rediger innhold
Innebygd
Mer
Tildelinger
Ledertavle
Vis mer
Vis mindre
Denne ledertavlen er for øyeblikket privat. Klikk
Share
for å gjøre den offentlig.
Denne ledertavlen er deaktivert av ressurseieren.
Denne ledertavlen er deaktivert fordi alternativene er forskjellige fra ressurseieren.
Alternativer for tilbakestilling
Match opp
er en åpen mal. Det genererer ikke poengsummer for en ledertavle.
Pålogging kreves
Visuell stil
Skrifter
Krever abonnement
Alternativer
Bytt mal
Vis alle
Flere formater vises når du spiller av aktiviteten.
Åpne resultater
Kopier kobling
QR-kode
Slette
Gjenopprett automatisk lagring:
?