Vertical Asymptote - Values for x that create imaginary lines that a function approaches but may never cross are called, Slant Asymptote - If the numerator of a function is exactly one degree higher than the denominator, what type of asymptote does the function contain?, Holes - Points that are excluded from the function, but are not asymptotes are called, Local Minimum - A point included on a graph where the function switches from a decreasing interval to an increasing interval is called a, Y-intercepts - This is NOT a point of interest when solving and graphing rational inequalities, x≥2 - Solution(s) to: 3x+2≥8, -1<x<9 - Solution(s) to: |x-4|<5, No horizontal asymptote - Property of: (3x3+4x+7)/(4x-1), Horizontal asymptote @ y=-3 - Property of: (9x2+2x-1)/(-3x2+6), Horizontal asymptote @ y=0 - Property of: (4x2+5x+6)/(2x4-1), X-intercepts @ -4,3 - Property of: (x2+x-12)/(2x2+x-1), Vertical asymptote @ -1,1 - Property of: (3x2+2x)/(x3-x), (-⚮,-6)U(2.5,⚮) - Solution(s) to: 2x2+7x-30>0, (-⚮,-7]U[0,3] - Solution(s) to: x3+4x2-21x≤0, (-4,0)U(3,⚮) - Solution(s) to: (x2+4x)/(x-3)>0, (3,4] - Solution(s) to: (x2-x-12)/(x2-9)≤0, 2x+1 - (2x3-7x2+6x+5) DIVIDED BY (x2-4x+5), 3x2-1 - (6x4-17x2+5) DIVIDED BY (2x2-5), y=3x-1 - Equation of slant asymptote for: (9x3-15x2+25x-7)/(3x2-4x+7), Hole @ 5 - Property of: x(x+2)(x-3)(x-5)/(x+1)(x-1)(x-5),
0%
Pre-Calculus Quiz 4 (Practice)
Deli
ustvaril/-a
Cdabney
Uredi vsebino
Vdelaj
Več
Naloge
Lestvica vodilnih
Prikaži več
Prikaži manj
Ta lestvica je trenutno zasebna. Kliknite
Deli
, da jo objavite.
Lastnik vira je onemogočil to lestvico vodilnih.
Ta lestvica vodilnih je onemogočena, ker se vaše možnosti razlikujejo od možnosti lastnika vira.
Možnosti za vrnitev
Ujemanje
je odprta predloga. Ne ustvarja rezultatov za lestvico vodilnih.
Potrebna je prijava
Vizualni slog
Pisave
Zahtevana je naročnina
Možnosti
Preklopi predlogo
Pokaži vse
Med igranjem dejavnosti se bo prikazalo več oblik zapisa.
Odprti rezultati
Kopiraj povezavo
QR koda
Izbriši
Obnovi samodejno shranjeno:
?