Vertical Asymptote - Values for x that create imaginary lines that a function approaches but may never cross are called, Slant Asymptote - If the numerator of a function is exactly one degree higher than the denominator, what type of asymptote does the function contain?, Holes - Points that are excluded from the function, but are not asymptotes are called, Local Minimum - A point included on a graph where the function switches from a decreasing interval to an increasing interval is called a, Y-intercepts - This is NOT a point of interest when solving and graphing rational inequalities, x≥2 - Solution(s) to: 3x+2≥8, -1<x<9 - Solution(s) to: |x-4|<5, No horizontal asymptote - Property of: (3x3+4x+7)/(4x-1), Horizontal asymptote @ y=-3 - Property of: (9x2+2x-1)/(-3x2+6), Horizontal asymptote @ y=0 - Property of: (4x2+5x+6)/(2x4-1), X-intercepts @ -4,3 - Property of: (x2+x-12)/(2x2+x-1), Vertical asymptote @ -1,1 - Property of: (3x2+2x)/(x3-x), (-⚮,-6)U(2.5,⚮) - Solution(s) to: 2x2+7x-30>0, (-⚮,-7]U[0,3] - Solution(s) to: x3+4x2-21x≤0, (-4,0)U(3,⚮) - Solution(s) to: (x2+4x)/(x-3)>0, (3,4] - Solution(s) to: (x2-x-12)/(x2-9)≤0, 2x+1 - (2x3-7x2+6x+5) DIVIDED BY (x2-4x+5), 3x2-1 - (6x4-17x2+5) DIVIDED BY (2x2-5), y=3x-1 - Equation of slant asymptote for: (9x3-15x2+25x-7)/(3x2-4x+7), Hole @ 5 - Property of: x(x+2)(x-3)(x-5)/(x+1)(x-1)(x-5),
0%
Pre-Calculus Quiz 4 (Practice)
Jaga
looja
Cdabney
Redigeeri sisu
Manusta
Veel
Ülesandeid
Edetabel
Näita rohkem
Näita vähem
See edetabel on praegu privaatne. Selle avalikustamiseks klõpsake käsul
Jaga
.
Materjali omanik on selle edetabeli keelanud.
See edetabel on keelatud, kuna teie valikud erinevad materjali omaniku omadest.
Taasta valikud
Paaripanek
on avatud mall. Sellega ei saa edetabeli punkte.
Sisselogimine on nõutud
Visuaalne stiil
Fondid
Vajalik tellimus
Valikud
Vaheta malli
Näita kõike
Tegevust mängides kuvatakse rohkem vorminguid.
Avatud tulemused
Kopeeri link
QR-kood
Kustuta
Kas taastada automaatselt salvestatud
?