Vertical Asymptote - Values for x that create imaginary lines that a function approaches but may never cross are called, Slant Asymptote - If the numerator of a function is exactly one degree higher than the denominator, what type of asymptote does the function contain?, Holes - Points that are excluded from the function, but are not asymptotes are called, Local Minimum - A point included on a graph where the function switches from a decreasing interval to an increasing interval is called a, Y-intercepts - This is NOT a point of interest when solving and graphing rational inequalities, x≥2 - Solution(s) to: 3x+2≥8, -1<x<9 - Solution(s) to: |x-4|<5, No horizontal asymptote - Property of: (3x3+4x+7)/(4x-1), Horizontal asymptote @ y=-3 - Property of: (9x2+2x-1)/(-3x2+6), Horizontal asymptote @ y=0 - Property of: (4x2+5x+6)/(2x4-1), X-intercepts @ -4,3 - Property of: (x2+x-12)/(2x2+x-1), Vertical asymptote @ -1,1 - Property of: (3x2+2x)/(x3-x), (-⚮,-6)U(2.5,⚮) - Solution(s) to: 2x2+7x-30>0, (-⚮,-7]U[0,3] - Solution(s) to: x3+4x2-21x≤0, (-4,0)U(3,⚮) - Solution(s) to: (x2+4x)/(x-3)>0, (3,4] - Solution(s) to: (x2-x-12)/(x2-9)≤0, 2x+1 - (2x3-7x2+6x+5) DIVIDED BY (x2-4x+5), 3x2-1 - (6x4-17x2+5) DIVIDED BY (2x2-5), y=3x-1 - Equation of slant asymptote for: (9x3-15x2+25x-7)/(3x2-4x+7), Hole @ 5 - Property of: x(x+2)(x-3)(x-5)/(x+1)(x-1)(x-5),
0%
Pre-Calculus Quiz 4 (Practice)
Podeli
autor
Cdabney
Uredi sadržaj
Ugradi
Više
Zadatke
Tabela
Prikaži više
Prikaži manje
Ova tabela je trenutno privatna. Kliknite na
Podeli
da biste je objavili.
Pristup tabeli je onemogućio vlasnik sredstva.
Ova tabela je onemogućena pošto Vam se podešavanja razlikuju od podešavanja vlasnika sredstva.
Vrati podešavanja
Spoji
je otvoreni šablon. On ne generiše rezultate za tabelu rangiranja.
Prijava je obavezna
Vizuelni stil
Fontove
Potrebna je pretplata
Postavke
Promeni šablon
Prikaži sve
Više formata će se pojaviti tokom igranja aktivnosti.
Otvoreni rezultati
Kopiraj vezu
QR kôd
Izbriši
Vrati automatski sačuvano:
?