Vertical Asymptote - Values for x that create imaginary lines that a function approaches but may never cross are called, Slant Asymptote - If the numerator of a function is exactly one degree higher than the denominator, what type of asymptote does the function contain?, Holes - Points that are excluded from the function, but are not asymptotes are called, Local Minimum - A point included on a graph where the function switches from a decreasing interval to an increasing interval is called a, Y-intercepts - This is NOT a point of interest when solving and graphing rational inequalities, x≥2 - Solution(s) to: 3x+2≥8, -1<x<9 - Solution(s) to: |x-4|<5, No horizontal asymptote - Property of: (3x3+4x+7)/(4x-1), Horizontal asymptote @ y=-3 - Property of: (9x2+2x-1)/(-3x2+6), Horizontal asymptote @ y=0 - Property of: (4x2+5x+6)/(2x4-1), X-intercepts @ -4,3 - Property of: (x2+x-12)/(2x2+x-1), Vertical asymptote @ -1,1 - Property of: (3x2+2x)/(x3-x), (-⚮,-6)U(2.5,⚮) - Solution(s) to: 2x2+7x-30>0, (-⚮,-7]U[0,3] - Solution(s) to: x3+4x2-21x≤0, (-4,0)U(3,⚮) - Solution(s) to: (x2+4x)/(x-3)>0, (3,4] - Solution(s) to: (x2-x-12)/(x2-9)≤0, 2x+1 - (2x3-7x2+6x+5) DIVIDED BY (x2-4x+5), 3x2-1 - (6x4-17x2+5) DIVIDED BY (2x2-5), y=3x-1 - Equation of slant asymptote for: (9x3-15x2+25x-7)/(3x2-4x+7), Hole @ 5 - Property of: x(x+2)(x-3)(x-5)/(x+1)(x-1)(x-5),
0%
Pre-Calculus Quiz 4 (Practice)
Подели
аутор
Cdabney
Уреди садржај
Угради
Више
Табела
Прикажи више
Прикажи мање
Ова табела је тренутно приватна. Кликните на
Подели
да бисте је објавили.
Приступ табели је онемогућио власник средства.
Ова табела је онемогућена пошто Вам се подешавања разликују од подешавања власника средства.
Врати подешавања
Споји
је отворени шаблон. Он не генерише резултате за табелу рангирања.
Пријава је обавезна
Визуелни стил
Фонтове
Потребна је претплата
Поставке
Промени шаблон
Прикажи све
Више формата ће се појавити током играња активности.
Отворени резултати
Копирај везу
QР кôд
Избриши
Врати аутоматски сачувано:
?