Vertical Asymptote - Values for x that create imaginary lines that a function approaches but may never cross are called, Slant Asymptote - If the numerator of a function is exactly one degree higher than the denominator, what type of asymptote does the function contain?, Holes - Points that are excluded from the function, but are not asymptotes are called, Local Minimum - A point included on a graph where the function switches from a decreasing interval to an increasing interval is called a, Y-intercepts - This is NOT a point of interest when solving and graphing rational inequalities, x≥2 - Solution(s) to: 3x+2≥8, -1<x<9 - Solution(s) to: |x-4|<5, No horizontal asymptote - Property of: (3x3+4x+7)/(4x-1), Horizontal asymptote @ y=-3 - Property of: (9x2+2x-1)/(-3x2+6), Horizontal asymptote @ y=0 - Property of: (4x2+5x+6)/(2x4-1), X-intercepts @ -4,3 - Property of: (x2+x-12)/(2x2+x-1), Vertical asymptote @ -1,1 - Property of: (3x2+2x)/(x3-x), (-⚮,-6)U(2.5,⚮) - Solution(s) to: 2x2+7x-30>0, (-⚮,-7]U[0,3] - Solution(s) to: x3+4x2-21x≤0, (-4,0)U(3,⚮) - Solution(s) to: (x2+4x)/(x-3)>0, (3,4] - Solution(s) to: (x2-x-12)/(x2-9)≤0, 2x+1 - (2x3-7x2+6x+5) DIVIDED BY (x2-4x+5), 3x2-1 - (6x4-17x2+5) DIVIDED BY (2x2-5), y=3x-1 - Equation of slant asymptote for: (9x3-15x2+25x-7)/(3x2-4x+7), Hole @ 5 - Property of: x(x+2)(x-3)(x-5)/(x+1)(x-1)(x-5),
0%
Pre-Calculus Quiz 4 (Practice)
Поділитися
автор:
Cdabney
Редагувати вміст
Вбудувати
Більше
Завдання
Список переможців
Показати більше
Показати менше
Цей список ресурсів наразі є приватним. Натисніть
поділитися
, щоб зробити його публічним.
Власник/-ця ресурсу приховав/-ла список переможців.
Цей список переможців був прихований, оскільки ваші параметри відрізняються від параметрів власника/-ці ресурсу.
Відновити параметри
Відповідники
— відкритий шаблон. Тут не генеруються бали для списку переможців.
Вхід обов’язковий
Візуальний стиль
Шрифти
Потрібна підписка
Параметри
Обрати інший шаблон
Показати всі
Під час відтворення вправи відображатиметься більше форматів.
Відкриті результати
Копіювати посилання
QR-код
Видалити
Відновити автоматично збережене:
?